亚洲美女爱爱-夜夜添夜夜添夜夜摸夜夜摸-97碰成人国产免费公开视频-国产午夜大片-www黄av-国产94在线 | 亚洲-亚洲午夜久久久精品一区二区三剧-精品视频亚洲-久久久久国色av∨免费看-黄色片一区二区-69福利视频-国产老头和老头xxxxx免费-99精品视频一区在线观看-日韩三级黄色毛片-亚洲激情图片区-黄色a一级-99re6在线-91九色视频-日本欧美久久久-成人国产精品免费观看

你的位置:首頁 > RF/微波 > 正文

高功率GaN RF放大器的熱考慮因素

發布時間:2022-10-13 來源:Wolfspeed 責任編輯:wenwei

【導讀】氮化鎵 (GaN) 是需要高頻率工作(高 Fmax)、高功率密度和高效率的應用的理想選擇。與硅相比,GaN 具有達 3.4 eV 的 3 倍帶隙,達 3.3 MV/cm 的 20 倍臨界電場擊穿,達 2,000 cm2/V·s 的 1.3 倍電子遷移率,這意味著與 RDS(ON) 和擊穿電壓相同的硅基器件相比,GaN RF 高電子遷移率晶體管(HEMT)的尺寸要小得多。因此,GaN RF HEMT 的應用超出了蜂窩基站和國防雷達范疇,在所有 RF 細分市場中獲得應用。


其中許多應用需要很長的使用壽命,典型的國防和電信使用場景需要 10 年以上的工作時間。高功率 GaN HEMT 的可靠性取決于基礎半導體技術中的峰值溫度。為了最大限度地延長和提升 GaN 型放大器系統的壽命和性能,設計者必須充分了解熱環境及其局限性。


#1 結溫和可靠性


衡量半導體器件可靠性的行業標準指標是平均失效時間(MTTF),這是一種統計方法,用于估計在給定的器件樣本經過一定時間的測試后,單個器件失效前經過的時間。MTTF 值通常以年表示,樣本中單個器件發生故障前經過的時間越長,MTTF 越高。


結溫 Tj,或器件中基礎半導體的溫度,與襯底材料在保持基礎半導體散熱上的作用一樣,對器件可靠性起著重要作用。與硅的 120 W/mK 熱導率相比,碳化硅 (SiC) 的熱導率為 430 W/mK,且溫度上升時,下降的更緩慢,這使得后者非常適合用于 GaN。對于類似的晶體管布局:60 W 的功耗和 100 μm 的芯片厚度,碳化硅基氮化鎵(GaN on SiC) 比 硅基氮化鎵(GaN on Si)工作溫度低 19 °C,因此 MTTF 更長。[1,2]


Wolfspeed 通過在直流工作條件下對 GaN HEMT 施加應力,生成 MTTF 與結溫的曲線,其中結溫高達 375 °C。峰值結溫與 MTTF 直接相關,Wolfspeed 的所有 GaN 技術表明,在 225 °C 的峰值結溫下,MTTF 大于 10 年。


#2 GaN 結溫和表面溫度


在 GaN HEMT 的工作過程中,電子在其中從漏極流向源極的 GaN 溝道或結內,達到峰值溫度。這種結溫無法直接測量,因為它被金屬層阻擋(圖 1)。


5.jpg

圖 1:無法使用 IR 相機直接測量結溫或通道溫度


使用紅外 (IR) 顯微鏡可以測量的是器件表面溫度,但該溫度低于結溫。有限元分析 (FEA) 的使用允許創建精確的通道到表面溫差,從中可計算出結殼熱阻。因此,通過有限元法(FEM)模擬,我們可以將紅外表面測量與結關聯起來。[3]


在 Ansys 軟件中創建物理模型,以反映 IR 測量系統中使用的硬件。這包括器件夾具底部 75 °C 的邊界條件,以匹配 IR 成像條件。軟件使用物理對稱性對模型進行分段,以減少計算資源消耗和模擬時間(圖 2)。


6.jpg

圖 2:模型截面。器件夾具的底部被限制在 75°C,因為這是為進行最佳器件校準而取用的所有 IR 測量值對應的散熱器溫度


放大率為 5 倍的 IR 相機分辨率約為 7 μm,而產生熱量的通道寬度小于 1 μm,并埋在其他幾層材料之下。因此,IR 相機測量的是空間平均值(圖 3)。由此產生的數據值明顯低于實際峰值結溫。例如,當 7 μm 以上的空間平均溫度為 165 °C 時,峰值結溫可能高達 204 °C。


7.jpg

圖 3:利用以熱源為中心的 7μm 截面上模型的平均溫度,通過統計分析計算 IR 測量值與模擬結果的相關性


#3 計算熱阻


結與殼之間的溫差由熱阻引起,通過將結與殼之間傳遞的熱量乘以結與殼之間的熱阻而得出。下面的等式 1 將熱阻描述為空間中支持固定熱流(q)的兩個表面之間的溫差(Δ)。[4]


等式 1:


1663584738599198.png


這種關系允許 Wolfspeed 計算峰值結溫并確定受測器件(DUT)的 MTTF。


采用 FEM 熱仿真來提取熱阻 Rθjc。封裝法蘭底側的溫度保持在固定值 Tc,固定 DC 功率 Pdiss 在 GaN HEMT 中耗散。計算結 (Tj)和封裝法蘭背面(Tc)之間的溫差,如等式 2 所示。


等式 2:


1663584716286652.png


熱阻計算如下。


等式 3:


1663584701805755.png


然而,許多使用碳化硅基氮化鎵(GaN on SiC)HEMT 的系統在脈沖調制模式下工作,而不是在連續波(CW)模式下工作。了解熱阻如何響應脈沖寬度和占空比定義的瞬態而變化,以便將正確的 Rθjc 值應用到應用中,這一點很重要。


為了獲得脈沖寬度和占空比的無數組合,使用了幾個占空比的熱阻與脈沖長度的關系圖,其中脈沖長度用對數表示(圖 4)。


11.jpg

圖 4:瞬態熱阻響應曲線顯示了 Rθjc 如何隨脈沖寬度和占空比而變化


#4 器件貼裝考慮因素


大功率晶體管與系統其余部分之間的界面是長期可靠性的關鍵,因為它引入了設計者必須在系統級考慮的額外熱阻(等式 4)。


等式 4:


1663584675400832.png


其中,Raj 是環境到結熱阻,Rint 是界面熱阻,Rhs 是散熱器到環境熱阻。


Wolfspeed 建議用焊接封裝的 GaN 器件以獲得最佳的熱性能。銦箔也可用作熱界面材料,但必須選擇正確的箔厚度,以避免對法蘭施加應力。法蘭安裝的扭矩不得超過數據表中規定的最大值。[5,6]


#5 使用數據表來計算 Tj


以 Wolfspeed 適用于 0.5 GHz - 3.0 GHz 的 CG2H30070F-AMP GaN HEMT 為例,在 25 °C 的外殼溫度下用于 CW 應用。元器件數據表(表 1)中的性能數據可用于計算最高耗散功率,如等式 5 和 6 所示。


13.jpg

表 1:使用數據表計算最高耗散功率


等式 5: 


14.png


等式 6:


1663584630307632.png


將數據表中的信息插入電子表格軟件 - 頻率、Pout (dBm)、效率 (%)、Pout (W)、Pin (W) 和 Pdc (W) - 可以快速計算 Pdiss (W) 并選擇最高的 Pdiss,在我們的示例中,在 1.5 GHz 下為 79.8 W 或約 80 W。


參考數據表,我們發現這對應于 1.5oC/W 的 CW 熱阻 Rθjc。現在可以按照等式 7 計算峰值結溫。


等式 7:


1663584490539090.png


使用以下值:Tc = 25oC、Pdiss = 80 W 以及 Rθjc = 1.5oC/W,得到 Tj = 145oC。


#6 設計支持


在國防和商業雷達應用以及 LTE 和 5G 部署中,RF GaN 的使用率正在迅速增加。這些應用要求在設計時考慮可靠性。


高功率 GaN HEMT 的可靠性取決于峰值結溫,對于工程師來說,了解如何設計最新的 GaN HEMT 以滿足其設計可靠性目標變得越來越重要。


若需設計支持,請立即聯系 Wolfspeed。


參考資料:


1. Thermal Analysis and its application to High Power GaN HEMT Amplifiers (https://www.wolfspeed.com/knowledge-center/article/thermal-considerations-for-high-power-gan-rf-amplifiers/)


2. Silicon Thermal Properties (http://www.ioffe.ru/SVA/NSM/Semicond/Si/thermal.html)


3. Thermal Performance Guide for High Power SiC MESFET and GaN HEMT Transistors (https://assets.wolfspeed.com/uploads/2021/06/Appnote%252010.pdf)


4. Thermal Resistance and Thermal Conductance (https://ctherm.com/resources/helpful-links-tools/thermalresistanceandconductivity/)


5. Indium Mounting Procedure (https://cms.wolfspeed.com/app/uploads/2020/12/Indium_Mounting_Procedure.pdf)


6. Eutectic Die Bond Procedure (https://cms.wolfspeed.com/app/uploads/2020/12/Appnote-2-Eutectic.pdf)


英文原稿,敬請訪問:

https://www.wolfspeed.com/knowledge-center/article/thermal-considerations-for-high-power-gan-rf-amplifiers/


來源:Wolfspeed



免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯系小編進行處理。


推薦閱讀:


除了氮化鎵,快充技術還須關注哪些領域?

【EMC基礎篇②】噪聲的根源和種類,追蹤看不見的噪聲

芯片測試大講堂——MIPI D-PHY

MOS管的Miller 效應

Sallen-Key低通濾波器設計

特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索

關閉

?

關閉

主站蜘蛛池模板: 亚洲精品毛片一区二区 | 日本精品久久久久中文字幕乱中年 | 国产在线日韩 | 精品国产露脸对白在线观看 | 亚洲天天做日日做天天欢 | 亚洲精品日韩精品 | 人与动人物xxxx毛片人与狍 | 18禁黄网站男男禁片免费观看 | 俺去俺来也www色官网cms | 国产美女亚洲精品久久久综合 | 怡红院免费的全部视频 | 中文字幕乱码无码人妻系列蜜桃 | 国产欧美丝袜在线二区 | 国产三级国产精品 | 亚洲深夜福利视频 | 爱情岛论坛成人永久网站在线观看 | 亚洲免费一级视频 | 激情欧美一区二区 | 久久亚洲少妇 | 亚洲a人| videossex性糟蹋重 | 亚洲女人被黑人巨大进入 | 亚洲va久久久噜噜噜久久天堂 | 国产精品久久这里只有精品 | 久久99视频精品 | 综合无码成人aⅴ视频在线观看 | 国产午夜禁区精品视频 | 国产99久久久欧美黑人刘玥 | 国产成熟妇女性视频电影 | 九色视频网站 | 韩国和日本免费不卡在线v 国产精品一区二区香蕉 | 人妻丰满熟妇aⅴ无码 | 亚洲精品第一 | 色涩网站| 国产精品人成视频免费vod | 尤物网站在线播放 | 免费久久99精品国产自在现线 | av片免费播放 | 欧美性受xxxxxx黑人xyx性爽 | 日韩一区二区免费看 | 日本黄色特级片 | 四虎成人永久免费视频 | 国产基佬gv在线观看网站 | 中文字幕一卡二卡三卡 | 久久久精品视频在线观看 | 亚洲国产精品成人网址天堂 | 一本大道无码日韩精品影视_ | 成人久久久精品乱码一区二区三区 | 成 年 人 黄 色 大 片大 全 | 一区二区三区高清在线观看 | 国产精品熟女人妻 | 国产精品人妻系列21p | 亚洲欧洲日产国码无码网站 | 国内精品免费视频 | 毛片导航 | 久久这里只精品热免费 | 国产精品久久久久久人妻 | 欧美经典影片视频中文 | 国产999精品视频 | 18国产免费视频 | 亚洲人成小说网站色 | 国产91福利 | 播放少妇的奶头出奶水的毛片 | 欧美在线日韩精品 | 日本成人免费网站 | 99久久久国产精品无码免费 | 四虎影视一区二区精品 | 国产最爽的乱淫视频媛 | 日本欧美一级片 | 国产一区二区三区又黄又爽 | 99热在线播放 | 爱情岛论坛av | 日本熟妇人妻中出 | 国产午夜精品一区二区三区视频 | 五月婷之久久综合丝袜美腿 | 久久视频国产 | 性做爰视频免费播放大全 | 国产人妖ts重口系列喝尿视频 | 毛片直接看 | www.久热 | 欧美大片高清免费观看 | 国产精品三级一区二区 | 伊人久久综合影院 | 久久人妻无码中文字幕第一 | 波多野结衣视频一区 | 亚洲性无码av在线欣赏网 | 国产欧美va天堂在线电影 | 中文免费视频 | 精品国产精品久久一区免费式 | 鲁鲁网亚洲站内射污 | 国产女优在线播放 | 欧美大片免费观看在线观看网站推荐 | 久久久蜜桃一区二区 | www.男人天堂 | 欧亚毛片 | 国产成人精品午夜福利 | 丝袜亚洲精品中文字幕一区 | 火箭视频在线观看精品 | 亚洲欧美日韩中文字幕一区二区三区 |